Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 36
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Extreme Medicine ; - (2):5-12, 2021.
Статья в английский | EMBASE | ID: covidwho-2324010

Реферат

The level and duration of protective immunity are often analyzed qualitatively or semi-quantitatively. The same strategy is applied to the analysis of antibody dynamics. At some point in time t after exposure or immunization, the presence of immunity against the infection is inferred from the level of specific antibodies by comparing it to a reference value. This approach does not account for the stochastic nature of human disease after exposure to a pathogen. At the same time, it is not fully clear what antibody level should be considered protective. The aim of this study was to develop a mathematical model for quantitative determination of protective immunity against SARS-CoV-2 and its duration. We demonstrate that the problem of describing protective immunity in quantitative terms can be broken down into 2 interrelated problems: describing the quantitative characteristics of a pathogen's virulence (in our case, the pathogen is SARS-CoV-2) and describing the dynamics of antibody titers in a biological organism. Below, we provide solutions for these problems and identify parameters of the model which describes such dynamics. Using the proposed model, we offer a theoretical solution to the problem of protective immunity and its duration. We also note that in order to quantitatively determine the studied parameters in a homogenous population group, it is necessary to know 5 parameters of the bivariate probability density function for correlated continuous random variables: the infective dose of the pathogen and the antibody titer at which the disease develops and which are still unknown.Copyright © Extreme Medicine.All right reserved.

2.
Expert Opin Biol Ther ; 23(2): 207-222, 2023 02.
Статья в английский | MEDLINE | ID: covidwho-2260142

Реферат

INTRODUCTION: The current vaccines used to fight against COVID-19 are effective, however the induction of protective immunity is a pending goal required to prevent viral transmission, prevent the generation of new variants, and ultimately eradicate SARS-CoV-2. Mucosal immunization stands as a promising approach to achieve protective immunity against SARS-CoV-2; therefore, it is imperative to innovate the current vaccines by developing mucosal candidates, focusing not only on their ability to prevent severe COVID-19 but to neutralize the virus before invasion of the respiratory system and other mucosal compartments. AREAS COVERED: This review covers the current advances on the development of anti-COVID-19 mucosal vaccines. Biomedical literature, including PubMed and clinicaltrials.gov website, was analyzed to identify the state of the art for this field. The achievements in preclinical and clinical evaluations are presented and critically analyzed. EXPERT OPINION: There is a significant advance on the development of mucosal vaccines against SARSCoV-2, which is a promise to increase the efficacy of immunization against this pathogen. Both preclinical and clinical evaluation for several candidates have been performed. The challenges in this road (e.g. low immunogenicity, a reduced number of adjuvants available, and inaccurate dosage) are identified and also critical perspectives for the field are provided.


Тема - темы
COVID-19 , Vaccines , Humans , RNA, Viral , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , COVID-19 Vaccines
3.
Pathog Immun ; 7(2): 93-119, 2022.
Статья в английский | MEDLINE | ID: covidwho-2265580

Реферат

Most vaccines against viral pathogens protect through the acquisition of immunological memory from long-lived plasma cells that produce antibodies and memory B cells that can rapidly respond upon an encounter with the pathogen or its variants. The COVID-19 pandemic and rapid deployment of effective vaccines have provided an unprecedented opportunity to study the immune response to a new yet rapidly evolving pathogen. Here we review the scientific literature and our efforts to understand antibody and B-cell responses to SARS-CoV-2 vaccines, the effect of SARSCoV-2 infection on both primary and secondary immune responses, and how repeated exposures may impact outcomes.

4.
Front Cell Infect Microbiol ; 12: 978440, 2022.
Статья в английский | MEDLINE | ID: covidwho-2198706

Реферат

Purpose: This study was conducted in order to properly understand whether prior seasonal human coronavirus (HCoV) immunity could impact the potential cross-reactivity of humoral responses induced by SARS-CoV-2 vaccine, thereby devising universal coronavirus vaccines for future outbreaks. Methods: We performed enzyme-linked immunosorbent assay (ELISA) to quantify the immunoglobulin G (IgG) antibody levels to spike (S) protein and S1 subunit of HCoVs (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E), and ELISA [anti-RBD and anti-nucleoprotein (N)], chemiluminescence immunoassay assays (anti-RBD), pseudovirus neutralization test, and authentic viral neutralization test to detect the binding and neutralizing antibodies to SARS-CoV-2 in the vaccinees. Results: We found that the antibody of seasonal HCoVs did exist before vaccination and could be boosted by SARS-CoV-2 vaccine. A further analysis demonstrated that the prior S and S1 IgG antibodies of HCoV-OC43 were positively correlated with anti-RBD and neutralization antibodies to SARS-CoV-2 at 12 and 24 weeks after the second vaccination, and the correlation is more statistically significant at 24 weeks. The persistent antibody levels of SARS-CoV-2 were observed in vaccinees with higher pre-existing HCoV-OC43 antibodies. Conclusion: Our data indicate that inactivated SARS-CoV-2 vaccination may confer cross-protection against seasonal coronaviruses in most individuals, and more importantly, the pre-existing HCoV-OC43 antibody was associated with protective immunity to SARS-CoV-2, supporting the development of a pan-coronavirus vaccine.


Тема - темы
COVID-19 , Coronavirus OC43, Human , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
5.
Genes (Basel) ; 13(12)2022 12 13.
Статья в английский | MEDLINE | ID: covidwho-2163301

Реферат

The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.


Тема - темы
COVID-19 , Virus Diseases , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genome-Wide Association Study
6.
Vaccine ; 41(4): 892-902, 2023 Jan 23.
Статья в английский | MEDLINE | ID: covidwho-2159910

Реферат

As novel SARS-CoV-2 Variants of Concern emerge, the efficacy of existing vaccines against COVID-19 is declining. A possible solution to this problem lies in the development of a live attenuated vaccine potentially able of providing cross-protective activity against a wide range of SARS-CoV-2 antigenic variants. Cold-adapted (ca) SARS-CoV-2 variants, Dubrovka-ca-B4 (D-B4) and Dubrovka-ca-D2 (D-D2), were obtained after long-term passaging of the Dubrovka (D) strain in Vero cells at reduced temperatures. Virulence, immunogenicity, and protective activity of SARS-CoV-2 variants were evaluated in experiments on intranasal infection of Syrian golden hamsters (Mesocricetus auratus). In animal model infecting with ca variants, the absence of body weight loss, the significantly lower viral titer and viral RNA concentration in animal tissues, the less pronounced inflammatory lesions in animal lungs as compared with the D strain indicated the reduced virulence of the virus variant. Single intranasal immunization with D-B4 and D-D2 variants induced the production of neutralizing antibodies in hamsters and protected them from infection with the D strain and the development of severe pneumonia. It was shown that for ca SARS-CoV-2 variants, the temperature-sensitive (ts) phenotype was not obligate for virulence reduction. Indeed, the D-B4 variant, which did not possess the ts phenotype but had lost the ability to infect human lung cells Calu-3, exhibited reduced virulence in hamsters. Consequently, the potential phenotypic markers of attenuation of ca SARS-CoV-2 variants are the ca phenotype, the ts phenotype, and the change in species specificity of the virus. This study demonstrates the great potential of SARS-CoV-2 cold adaptation as a strategy to develop a live attenuated COVID-19 vaccine.


Тема - темы
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Antibodies, Neutralizing , Antibodies, Viral , Chlorocebus aethiops , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Mesocricetus , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus , Temperature , Vero Cells
7.
Biotechnol Rep (Amst) ; 37: e00779, 2023 Mar.
Статья в английский | MEDLINE | ID: covidwho-2158538

Реферат

SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG. The RBD-Fc fusion was produced in Nicotiana benthamiana. Previously, we reported that this plant-produced vaccine is effective in inducing immune response in both mice and non-human primates. Here, the efficacy of our vaccine candidate was tested in Syrian hamster challenge model. Hamsters immunized with two intramuscular doses of Baiya SARS-CoV-2 Vax 1 induced neutralizing antibodies against SARS-CoV-2 and protected from SARS-CoV-2 challenge with reduced viral load in the lungs. These preliminary results demonstrate the ability of plant-produced subunit vaccine Baiya SARS-CoV-2 Vax 1 to provide protection against SARS-CoV-2 infection in hamsters.

8.
Front Med (Lausanne) ; 9: 962653, 2022.
Статья в английский | MEDLINE | ID: covidwho-2080178

Реферат

Background: SARS-CoV-2 infection does not confer long immunity. However, studies suggest that prior infection is associated with lower risk of reinfection and milder outcomes of recurrent infections. The aims of this retrospective observational case-control study were to describe the clinical and molecular characteristics of genetically confirmed Delta reinfection cases and to assess the potential protective role of preceding infection on the severity of reinfection. Methods: We used next generation sequencing (NGS) to explore if cases with two positive real time RT-PCR tests > 90 days apart were infected with a different SARS-CoV-2 variant. Cases with confirmed reinfection between August 1st and October 31st, 2021 (the Delta wave) in Slovenia were matched 1:4 by age, sex and timeframe (week of positive test) with individuals with primary infection. Sociodemographic and epidemiologic data, vaccination status, and data on hospitalization and outcome of infection were retrieved from several centralized and standardized national databases. Additional epidemiologic surveys were performed on a limited number of cases and controls. Results: We identified 628 cases of genetically confirmed reinfection during the study period and matched them with 2,512 control subjects with Delta primary infection. Primary infections in individuals with reinfection were mainly caused by B.1.258.17 (51.1%), followed by B.1.1.7 (15.1%) and reinfection was detected on average 271 days after primary infection (range 101-477 days). Our results show a substantially lower probability of hospitalization in cases with reinfection compared with controls (OR: 0.21, p = 0.017), but no significant difference was observed in intensive care unit admission and deaths. We observed a significantly lower proportion of vaccinated individuals among cases compared to controls (4.5% vs. 28.2%), suggesting that hybrid immunity leads to lower probability of reinfection. Detailed analysis of the temporal distribution of variants, responsible for reinfections, showed no significant differences in reinfection potential. Conclusion: Reinfection with the SARS-CoV-2 Delta variant resulted in fewer hospitalizations compared to the primary Delta infection, suggesting that primary infection may, to some extent, produce at least short lasting protective immunity. This study provides additional insight into the reinfection dynamics that may allow appropriate public health measures to be taken in subsequent waves of the COVID-19 pandemic.

9.
Front Immunol ; 13: 1004045, 2022.
Статья в английский | MEDLINE | ID: covidwho-2080154

Реферат

Haemodialysis patients respond poorly to vaccination and continue to be at-risk for severe COVID-19. Therefore, dialysis patients were among the first for which a fourth COVID-19 vaccination was recommended. However, targeted information on how to best maintain immune protection after SARS-CoV-2 vaccinations in at-risk groups for severe COVID-19 remains limited. We provide, to the best of our knowledge, for the first time longitudinal vaccination response data in dialysis patients and controls after a triple BNT162b2 vaccination and in the latter after a subsequent fourth full-dose of mRNA-1273. We analysed systemic and mucosal humoral IgG responses against the receptor-binding domain (RBD) and ACE2-binding inhibition towards variants of concern including Omicron and Delta with multiplex-based immunoassays. In addition, we assessed Spike S1-specific T-cell responses by interferon γ release assay. After triple BNT162b2 vaccination, anti-RBD B.1 IgG and ACE2 binding inhibition reached peak levels in dialysis patients, but remained inferior compared to controls. Whilst we detected B.1-specific ACE2 binding inhibition in 84% of dialysis patients after three BNT162b2 doses, binding inhibition towards the Omicron variant was only detectable in 38% of samples and declining to 16% before the fourth vaccination. By using mRNA-1273 as fourth dose, humoral immunity against all SARS-CoV-2 variants tested was strongly augmented with 80% of dialysis patients having Omicron-specific ACE2 binding inhibition. Modest declines in T-cell responses in dialysis patients and controls after the second vaccination were restored by the third BNT162b2 dose and significantly increased by the fourth vaccination. Our data support current advice for a four-dose COVID-19 immunisation scheme for at-risk individuals such as haemodialysis patients. We conclude that administration of a fourth full-dose of mRNA-1273 as part of a mixed mRNA vaccination scheme to boost immunity and to prevent severe COVID-19 could also be beneficial in other immune impaired individuals. Additionally, strategic application of such mixed vaccine regimens may be an immediate response against SARS-CoV-2 variants with increased immune evasion potential.


Тема - темы
COVID-19 , Viral Vaccines , Mice , Animals , Humans , Immunity, Humoral , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Mice, Inbred BALB C , Vaccination , Immunoglobulin G , Renal Dialysis , RNA, Messenger
10.
Front Immunol ; 13: 968105, 2022.
Статья в английский | MEDLINE | ID: covidwho-2065511

Реферат

Introduction: Despite vaccine development, the COVID-19 pandemic is ongoing due to immunity-escaping variants of concern (VOCs). Estimations of vaccine-induced protective immunity against VOCs are essential for setting proper COVID-19 vaccination policy. Methods: We performed plaque-reduction neutralizing tests (PRNTs) using sera from healthcare workers (HCWs) collected from baseline to six months after COVID-19 vaccination and from convalescent COVID-19 patients. The 20.2% of the mean PRNT titer of convalescent sera was used as 50% protective value, and the percentage of HCWs with protective immunity for each week (percent-week) was compared among vaccination groups. A correlation equation was deduced between a PRNT 50% neutralizing dose (ND50) against wild type (WT) SARS-CoV-2 and that of the Delta variant. Results: We conducted PRNTs on 1,287 serum samples from 297 HCWs (99 HCWs who received homologous ChAdOx1 vaccination (ChAd), 99 from HCWs who received homologous BNT162b2 (BNT), and 99 from HCWs who received heterologous ChAd followed by BNT (ChAd-BNT)). Using 365 serum samples from 116 convalescent COVID-19 patients, PRNT ND50 of 118.25 was derived as 50% protective value. The 6-month cumulative percentage of HCWs with protective immunity against WT SARS-CoV-2 was highest in the BNT group (2297.0 percent-week), followed by the ChAd-BNT (1576.8) and ChAd (1403.0) groups. In the inter-group comparison, protective percentage of the BNT group (median 96.0%, IQR 91.2-99.2%) was comparable to the ChAd-BNT group (median 85.4%, IQR 15.7-100%; P =0.117) and significantly higher than the ChAd group (median 60.1%, IQR 20.0-87.1%; P <0.001). When Delta PRNT was estimated using the correlation equation, protective immunity at the 6-month waning point was markedly decreased (28.3% for ChAd group, 52.5% for BNT, and 66.7% for ChAd-BNT). Conclusion: Decreased vaccine-induced protective immunity at the 6-month waning point and lesser response against the Delta variant may explain the Delta-dominated outbreak of late 2021. Follow-up studies for newly-emerging VOCs would also be needed.


Тема - темы
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Cohort Studies , Humans , Immunization, Passive , Kinetics , Pandemics , Prospective Studies , Republic of Korea/epidemiology , SARS-CoV-2 , Vaccination , COVID-19 Serotherapy
11.
Bull Natl Res Cent ; 46(1): 255, 2022.
Статья в английский | MEDLINE | ID: covidwho-2064872

Реферат

Background: To protect the global population from the ongoing COVID-19 pandemic caused by the severe acute respiratory ß-coronavirus 2 (SARS-CoV-2), a number of vaccines are currently being used in three dosages (i.e., along with the booster dose) to induce the immunity required to combat the SARS-CoV-2 and its variants. So far, several antivirals and the commercial vaccines have been found to evoke the required humoral and cellular immunity within a huge population around world. However, an important aspect to consider is the avoidance mechanism of the host protective immunity by SARS-CoV-2 variants. Main body of the abstract: Indeed, such an immune escape strategy has been noticed previously in case of SARS-CoV-1 and the Middle East Respiratory Syndrome coronavirus (MERS-CoV). Regarding the SARS-CoV-2 variants, the most important aspect on vaccine development is to determine whether the vaccine is actually capable to elicit the immune response or not, especially the viral spike (S) protein. Short conclusion: Present review thus focused on such elicitation of immunity as well as pondered to the avoidance of host immunity by the SARS-CoV-2 Wuhan strain and its variants.

12.
J Med Virol ; 94(11): 5294-5303, 2022 Nov.
Статья в английский | MEDLINE | ID: covidwho-2013614

Реферат

The avidity (binding strength) of IgG directed towards the receptor-binding domain (RBD) of spike protein has been recognized as a central marker in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology. It seems to be linked to increased infection-neutralization potential and therefore might indicate protective immunity. Using a prototype line assay based on the established recomLine SARS-CoV-2 assay, supplemented with RBD of the delta and the omicron variant, differential avidity determination of IgG directed towards RBD of wild-type (WT) SARS-CoV-2 and distinct variants was possible within one assay. Our data confirm that natural SARS-CoV-2 infection or one vaccination step lead to low avidity IgG, whereas further vaccination steps gradually increase avidity to high values. High avidity is not reached by infection alone. After infection with WT SARS-CoV-2 or vaccination based on mRNA WT, the avidity of cross-reacting IgG directed towards RBD of the delta variant only showed marginal differences compared to IgG directed towards RBD WT. In contrast, the avidity of IgG cross-reacting with RBD of the omicron variant was always much lower than for IgG RBD WT, except after the third vaccination step. Therefore, parallel avidity testing of RBD WT and omicron seems to be mandatory for a significant assessment of protective immunity towards SARS-CoV-2.


Тема - темы
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Mater Today Bio ; 16: 100354, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2004368

Реферат

This work presents an innovative ultra-sensitive biosensor having the Spike protein on carbon-based screen-printed electrodes (SPEs), for monitoring in point-of-care antibodies against SARS-CoV-2, a very important tool for epidemiological monitoring of COVID-19 infection and establishing vaccination schemes. In an innovative and simple approach, a highly conductive support is combined with the direct adsorption of Spike protein to enable an extensive antibody capture. The high conductivity was ensured by using carboxylated carbon nanotubes on the carbon electrode, by means of a simple and quick approach, which also increased the surface area. These were then modified with EDC/NHS chemistry to produce an amine layer and undergo Spike protein adsorption, to generate a stable layer capable of capturing the antibodies against SARS-CoV-2 in serum with great sensitivity. Electrochemical impedance spectroscopy was used to evaluate the analytical performance of this biosensor in serum. It displayed a linear response between 1.0 â€‹pg/mL and 10 â€‹ng/mL, with a detection limit of ∼0.7 â€‹pg/mL. The analysis of human positive sera containing antibody in a wide range of concentrations yielded accurate data, correlating well with the reference method. It also offered the unique ability of discriminating antibody concentrations in sera below 2.3 â€‹µg/mL, the lowest value detected by the commercial method. In addition, a proof-of-concept study was performed by labelling anti-IgG antibodies with quantum dots to explore a new electrochemical readout based on the signal generated upon binding to the anti-S protein antibodies recognised on the surface of the biosensor. Overall, the alternative serologic assay presented is a promising tool for assessing protective immunity to SARS-CoV-2 and a potential guide for revaccination.

14.
Immunology ; 167(3): 287-302, 2022 11.
Статья в английский | MEDLINE | ID: covidwho-1992825

Реферат

The COVID-19 pandemic has represented an unprecedented challenge for the humanity, and scientists around the world provided a huge effort to elucidate critical aspects in the fight against the pathogen, useful in designing public health strategies, vaccines and therapeutic approaches. One of the first pieces of evidence characterizing the SARS-CoV-2 infection has been its breadth of clinical presentation, ranging from asymptomatic to severe/deadly disease, and the indication of the key role played by the immune response in influencing disease severity. This review is aimed at summarizing what the SARS-CoV-2 infection taught us about the immune response, highlighting its features of a double-edged sword mediating both protective and pathogenic processes. We will discuss the protective role of soluble and cellular innate immunity and the detrimental power of a hyper-inflammation-shaped immune response, resulting in tissue injury and immunothrombotic events. We will review the importance of B- and T-cell immunity in reducing the clinical severity and their ability to cross-recognize viral variants.


Тема - темы
COVID-19 , Humans , Immunity , Inflammation , Pandemics , SARS-CoV-2
15.
Int J Infect Dis ; 122: 758-766, 2022 Sep.
Статья в английский | MEDLINE | ID: covidwho-1936534

Реферат

BACKGROUND: The characterization of reinfection with SARS-CoV-2 has been a subject of concern and controversy, especially with the surge of infections with highly transmissible variants worldwide. METHODS: This retrospective national study used comorbidities, vaccination status, SARS-CoV-2 variants of concern, and demographics data to profile participants who were reinfected with SARS-CoV-2, defined as having two reverse transcriptase-polymerase chain reaction-positive SARS-CoV-2 tests within at least 90 days apart. A multivariate logistic regression model assessed the risk factors associated with reinfection . Two control groups were selected: nonreinfected participants reporting a positive test (control group one) and those reporting a negative test (control group two). RESULTS: Between March 2020 and December 2021, 4454 reinfected participants were identified in Saudi Arabia (0.8%, 95% confidence interval [CI] 0.7-0.8). The majority (67.3%) were unvaccinated (95% CI 65.9-68.7) and 0.8% (95% CI 0.6-1.1) had severe or fatal SARS-CoV-2 disease. COVID-19 vaccines were 100% effective against mortality in reinfected individuals who received at least one dose, whereas it conferred 61% (odds ratio [OR] 0.4, 95% CI 0.1-1.0) additional protection against severe disease after the first dose and 100% after the second dose. In the risk factor analysis, reinfection was highly associated with comorbidities, such as HIV (OR 2.5, 95% CI 1.3-5.2; P = 0.009), obesity (OR 2.3, 95% CI 1.3-3.9; P = 0.003), pregnancy (OR 3.2, 95% CI 1.4-7.4; P = 0.005), and working in health care facilities (OR 6.1, 95% CI 3.1-12.9; P <0.0001). The delta variant (B.1.617.2) was the most frequent variant of concern among the reinfected cohort. CONCLUSION: This in-depth study of the reinfection profile identified risk factors and highlighted the associated SARS-CoV-2 variants. Results showed that naturally acquired immunity to SARS-CoV-2 through multiple reinfections together with vaccine-induced immunity provided substantial protection against severe SARS-CoV-2 disease and mortality.


Тема - темы
COVID-19 , Reinfection , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Reinfection/epidemiology , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology
16.
Front Immunol ; 13: 898520, 2022.
Статья в английский | MEDLINE | ID: covidwho-1911047

Реферат

Despite the fact that SARS-CoV-2 vaccines have been available in most parts of the world, the epidemic status remains grim with new variants emerging and escaping the immune protection of existing vaccines. Therefore, the development of more effective antigens and evaluation of their cross-protective immunity against different SARS-CoV-2 variants are particularly urgent. In this study, we expressed the wild type (WT), Alpha, Beta, Delta, and Lambda RBD proteins to immunize mice and evaluated their cross-neutralizing activity against different pseudoviruses (WT, Alpha, Beta, Delta, Lambda, and Omicron). All monovalent and pentavalent RBD antigens induced high titers of IgG antibodies against different variant RBD antigens. In contrast, WT RBD antigen-induced antibodies showed a lower neutralizing activity against Beta, Delta, Lambda, and Omicron pseudoviruses compared to neutralization against itself. Interestingly, Beta RBD antigen and multivalent antigen induced broader cross-neutralization antibodies than other variant RBD antigens. These data provide a reference for vaccine strain selection and universal COVID-19 vaccine design to fight the constant emergence of new SARS-CoV-2 variants.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Mice
17.
Vaccine ; 40(32): 4440-4452, 2022 07 30.
Статья в английский | MEDLINE | ID: covidwho-1882608

Реферат

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.


Тема - темы
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
18.
Front Immunol ; 13: 835104, 2022.
Статья в английский | MEDLINE | ID: covidwho-1785341

Реферат

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.


Тема - темы
COVID-19 , Immune System Diseases , Respiratory Distress Syndrome , Cytokine Release Syndrome , Cytokines , Humans , SARS-CoV-2
19.
Front Immunol ; 13: 828053, 2022.
Статья в английский | MEDLINE | ID: covidwho-1731780

Реферат

Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.


Тема - темы
Ad26COVS1/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/growth & development , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Cross-Sectional Studies , Germany , Humans , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
20.
Front Immunol ; 12: 724936, 2021.
Статья в английский | MEDLINE | ID: covidwho-1592205

Реферат

The COVID-19 pandemic has created an urgent situation throughout the globe. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability. The DEGs will help understand the disease's potential underlying molecular mechanisms and genetic characteristics, including the regulatory genes associated with immune response elements and protective immunity. This study aimed to determine the DEGs in mild and severe COVID-19 patients versus healthy controls. The Agilent-085982 Arraystar human lncRNA V5 microarray GEO dataset (GSE164805 dataset) was used for this study. We used statistical tools to identify the DEGs. Our 15 human samples dataset was divided into three groups: mild, severe COVID-19 patients and healthy control volunteers. We compared our result with three other published gene expression studies of COVID-19 patients. Along with significant DEGs, we developed an interactome map, a protein-protein interaction (PPI) pattern, a cluster analysis of the PPI network, and pathway enrichment analysis. We also performed the same analyses with the top-ranked genes from the three other COVID-19 gene expression studies. We also identified differentially expressed lncRNA genes and constructed protein-coding DEG-lncRNA co-expression networks. We attempted to identify the regulatory genes related to immune response elements and protective immunity. We prioritized the most significant 29 protein-coding DEGs. Our analyses showed that several DEGs were involved in forming interactome maps, PPI networks, and cluster formation, similar to the results obtained using data from the protein-coding genes from other investigations. Interestingly we found six lncRNAs (TALAM1, DLEU2, and UICLM CASC18, SNHG20, and GNAS) involved in the protein-coding DEG-lncRNA network; which might be served as potential biomarkers for COVID-19 patients. We also identified three regulatory genes from our study and 44 regulatory genes from the other investigations related to immune response elements and protective immunity. We were able to map the regulatory genes associated with immune elements and identify the virogenomic responses involved in protective immunity against SARS-CoV-2 infection during COVID-19 development.


Тема - темы
COVID-19/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Immunity/genetics , Aged , COVID-19/epidemiology , COVID-19/immunology , Female , Gene Ontology , Gene Regulatory Networks , Humans , Male , Middle Aged , Pandemics/prevention & control , Protein Interaction Maps/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology
Критерии поиска